On High Order ADER Discontinuous Galerkin Schemes for First Order Hyperbolic Reformulations of Nonlinear Dispersive Systems

نویسندگان

چکیده

Abstract This paper is on arbitrary high order fully discrete one-step ADER discontinuous Galerkin schemes with subcell finite volume limiters applied to a new class of first hyperbolic reformulations nonlinear dispersive systems based an extended Lagrangian approach introduced by Dhaouadi et al. (Stud Appl Math 207:1–20, 2018), Favrie and Gavrilyuk (Nonlinearity 30:2718–2736, 2017). We consider the two different systems, namely Serre–Green–Naghdi model water waves defocusing Schrödinger equation. The reformulation equation endowed curl involution constraint that needs be properly accounted for in multiple space dimensions. show original proposed (2018) only weakly multi-dimensional case strong hyperbolicity can restored at aid novel thermodynamically compatible GLM cleaning accounts PDE system. one two-dimensional numerical results both compare them available exact, experimental reference solutions whenever possible.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbitrary High Order Discontinuous Galerkin Schemes

In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...

متن کامل

Discontinuous Galerkin methods for first-order hyperbolic problems

In this paper we consider discontinuous Galerkin (DG) finite element approximations of a model scalar linear hyperbolic equation. We show that in order to ensure continuous stabilization of the method it suffices to add a jump-penalty-term to the discretized equation. In particular, the method does not require upwinding in the usual sense. For a specific value of the penalty parameter we recove...

متن کامل

Dispersive Behaviour of High Order Discontinuous Galerkin Finite Element Methods

The dispersive properties of hp version discontinuous Galerkin finite element approximation are studied in three different limits. For the small wave-number limit hk → 0, we show the discontinuous Galerkin gives a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins (J. Comput. Phys., 182(2):516– 545, 2002 ). If the mesh is fixed and...

متن کامل

Space-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems

We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov–Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a para...

متن کامل

Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems

Abdelaâziz Ezziani a,b Patrick Joly c aLaboratoire de mathématiques appliquées,CNRS UMR 5142, Université de Pau, IPRA-Avenue de l’université, B.P. 1155, 64013 Pau Cedex, France bTeam-Project Magique3D, INRIA Bordeaux-Sud Ouest Email: [email protected] cTeam-Project Poems, UMR 2706 CNRS-INRIA-ENSTA, INRIA Paris-Rocquencourt, B.P 105, 78153 Le Chesnay Cedex, France Email: Patrick.Jol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2021

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-021-01429-8